a^2+a^2=81

Simple and best practice solution for a^2+a^2=81 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for a^2+a^2=81 equation:



a^2+a^2=81
We move all terms to the left:
a^2+a^2-(81)=0
We add all the numbers together, and all the variables
2a^2-81=0
a = 2; b = 0; c = -81;
Δ = b2-4ac
Δ = 02-4·2·(-81)
Δ = 648
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{648}=\sqrt{324*2}=\sqrt{324}*\sqrt{2}=18\sqrt{2}$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-18\sqrt{2}}{2*2}=\frac{0-18\sqrt{2}}{4} =-\frac{18\sqrt{2}}{4} =-\frac{9\sqrt{2}}{2} $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+18\sqrt{2}}{2*2}=\frac{0+18\sqrt{2}}{4} =\frac{18\sqrt{2}}{4} =\frac{9\sqrt{2}}{2} $

See similar equations:

| 5x-13=15+7x4x+15=-10 | | 8t+20-t^2=0 | | n/3=2.5 | | 8t+20=t^2 | | 8t+20=1^2 | | 25=-16t^2+25t+7.25 | | 0.35x+0.05(2-x)=0.10(-41) | | 3v^2=-3v | | 5-5x=-28+2x | | 6x-15=41x+21 | | 6(x-4)=20.5 | | (4/7)x=-12 | | 161=13-w | | X+2+3x-5=-4x-1 | | Y=(0.9)t12 | | 100=5(4x+4) | | 2(x+2)-4=14 | | 2x/×+2=1/3 | | 3/4=3x/1/4 | | 4x+60°=180° | | 10x+9=5x-4 | | Y=(1/2)t | | 7x+4-3x+2=18 | | 2/x-1/4=3/20 | | c=3.14(20) | | 4x+68=54 | | 55=5(3x-4) | | 10/14=m/63 | | 5x7-10=50 | | Y=(0.85)t | | -3(x+9)-14=4-60 | | 4+3x/3+4-x/5=44/15 |

Equations solver categories